TDD is like working out

We all know that exercise is good for us, members of the species Homo Sapiens Sitonourasses. And yet most of us don’t do enough of it. The same is true for Test-Driven Development (TDD). But the similarity doesn’t end there.

With regular exercise, you can grow your muscles. The way this works is not linear, however. It follows an upward saw-tooth pattern: first you damage your muscles (training), then they heal (recovery) and eventually grow stronger than before (supercompensation), then you damage them again, etc:

muscle-workout

TDD follows the Damage-Heal-Grow cycle as well.

First we damage the system by writing a test that fails. Where before we could gloat in knowing all was well because our test suite said so, now we have to admit that there is still something wrong with our code. For some, this realization may hurt as much as their sore muscles after working out.

Luckily, we heal the system quickly by writing only the minimal amount of code required to make the test pass. With everything back to green in minutes or even seconds, we have every right to feel good again. TDD is perfect for short-attention spans.

Finally we grow the system by improving the design. The system can now handle everything we’ve ever thrown at it and more, because we generalized concepts and gave them a proper place in the code.

Damaging and healing happen on two levels in TDD.

First there is the syntactic level. You write a test that calls code that doesn’t exist yet, so the code doesn’t even compile. The healing that follows is to make the code compile, even though it doesn’t yet pass the test.

Only after this syntactic healing do you change the code to pass the test. The latter is more of a semantic type of healing.

The distinction between syntactic and semantic healing has implications for how we work.

There are only so many ways that a program can be syntactically broken, and in many cases, a sophisticated enough IDE can help heal it. For example, when you write a test that refers to a class that doesn’t yet exist, Eclipse offers a Quick Fix to create the class for you.

Semantic healing, on the other hand, is more difficult. The transformations of the Transformation Priority Premise can be seen as standard building blocks, and at least some of them can be automated. But that’s still a long way from the IDE generating the code that will make the failing test pass.

get-your-code-in-shape-practice-tddI haven’t seen many TDD practitioners do the equivalent of walking around the beach showing off their rock-hard abs, and that’s probably a good thing.

But just as we appreciate how a strong, muscular friend can easily handle any piece of furniture when he helps us move, so do product owners like it that we can always deliver any feature in a short amount of time.

Unfortunately, it just doesn’t score us any dates; for that we really do need to hit the gym.

Advertisements

How To Develop Software Using Only SaaS

cloud-codeThe world is fast moving to Software-as-a-Service (SaaS) and we developers are busy learning how to build SaaS applications.

We can now finally do that using nothing but SaaS applications ourselves.

The Developer’s Toolbox

As developers, we don’t ask for much.

An Integrated Development Environment (IDE) lets us do our main task: writing code. A Source Code Management (SCM) system stores our Heartbreaking Work of Staggering Genius. A Continuous Integration (CI) server pulls our code through hoops that prove it is ready for use. And finally a Platform-as-a-Service (PaaS) or other deployment environment runs our applications.

We are used to running all of these on premises. IDEs like Eclipse or IntelliJ run on our local machines. SCMs like Git or Subversion run on some company server, as does our Jenkins/Hudson or TeamCity CI server. Finally, we deploy to a Paas like CloudFoundry, or to a custom server.

Most of those tools already run in the cloud. For those that don’t, we can easily find good alternatives. Let’s take a look at some of the candidates.

Integrated Development Environments

I’ve written about Cloud9 before. It’s mainly focused on web languages like JavaScript. For Java, Codenvy seems a better choice. For both, you can run the hosted offering, or deploy it in your own data center.

Neither can match a local IDE experience yet, but the gap is closing. On the other hand, they offer some functionality you won’t easily find in locally installed IDEs, like remote pair programming.

Source Code Management

githubGit has taken over the world, and the SaaS version of it, GitHub, is following suit.

Some people even think that your GitHub profile is your resume.

Again, you can use the hosted version (with public or private repositories), or install GitHub in your data center.

Both Cloud9 and Codenvy work seamlessly with GitHub repositories.

Continuous Integration

Jenkins/Hudson is the leader in this space, and CloudBees offers a SaaS version. Other products include Bamboo, Travis CI and CodeShip. Some of these are free for open source projects. Again, there are hosted and on premises versions.

The CI tools support GitHub through public SSH keys for access and commit hooks for starting jobs.

Platform-as-a-Service

After GitHub, these are probably the most familiar to you: Pivotal CloudFoundry, Heroku, Google App Engine, and Azure. CloudFoundry is backed by many big organizations (including the company I work for, EMC) and seems to be emerging as the leader.

cloudfoundrySome cloud IDEs let you push to a PaaS directly, but I don’t think that’s the right way to do it.

You should commit to your SCM and let CI pick up your changes.

Your CI jobs should be responsible for pushing to the PaaS. Your CI may have a custom integration to your PaaS, or you may have to use something like the CloudFoundry command-line interface to push your changes.

Conclusion

It seems that our entire tool chain is now available as a service, although the IDEs still leave us wanting a bit. Most of these tools are available as open source and can be deployed in your own data center.

Looks like we’re making some progress towards a Frictionless Development Environment!

What SaaS applications are you using for software development? Please leave a comment below.

Removing Deployment Friction With Push-To-Deploy

appengineAt work we use CloudFoundry as our PaaS, but I also like to keep informed about what other platforms do.

Google AppEngine Introduces Push-To-Deploy

Google AppEngine recently added an interesting feature: Push-to-Deploy through Git.

With Push-To-Deploy, you can simply push your code to a Git repository to get your code deployed on AppEngine.

This Git repository is maintained by Google and tied to your cloud account. I guess this is implemented using the post-receive Git server hook.

Push-To-Deploy Removes Friction

What I like about this feature is that it removes some friction from the deployment process: you no longer need to know about how to deploy your application on AppEngine.

Push-To-Deploy inches us closer to a Frictionless Development Environment (FDE). The two most likely candidates to become the FDE of choice both support Git, so it’s easy to use Push-To-Deploy in both Orion and Cloud9.

More Friction Remains

LubricationOf course, this is only a small step and a lot more work needs to be done before we really have an FDE.

In my ideal world, for any change that I make the FDE would automatically run the tests and code checkers in the background and, when successful, push the changes to a development branch to make them available for my co-workers.

To make this efficient, only tests that could potentially have been impacted by the changes would run, and they would run in parallel in the cloud. When specified criteria are matched, changes on the development branch would propagate to master and, using Push-To-Deploy, to production.

Although this is all far far away, every step is to be applauded, and I hope other PaaS providers will follow Google’s example.

What Do You Think?

Do you use Google AppEngine? Git? Would you use Push-To-Deploy? Would you like to see a similar feature in CloudFoundry or another PaaS?

Please leave a comment.

Adventures in JavaScript: Getting Started

Node.jsOne of the high potentials for a Frictionless Development Environment (FDE) is Cloud9.

It is one of a growing number of web applications that uses JavaScript as the programming language for both front-end and back-end. The latter brought to you by Node.js.

So I thought it was time to start playing around with JavaScript and Node. Here is an account of my very first adventure into this Brave New World.

Preparations: Adding JavaScript Support to Eclipse

To keep the number of changes low, I wanted to keep my trusted old Eclipse. So the first step was to install Nodeclipse and jshint-eclipse.

To support documentation in the Markdown format that Node uses, I installed the Markdown Editor plugin for Eclipse.

This left me with nothing for unit tests. So I installed the JavaScript tools from Eclipse. That gave me some JS support, but nothing for creating unit tests.

Some googling told me there is such a thing as JsUnit, the JS port of my beloved JUnit. Unfortunately it doesn’t seem to come with Eclipse support, even though this thread indicates it does (or did).

JsTestDriverMaybe I’m just doing it wrong. I’d appreciate any hints in the comments.

Some more googling informed me that Orion is using JsTestDriver.

This introduction to JsTestDriver explains in detail how it works.

First Exercise: Roman Numerals

Now that I’m all set up, it’s time to do a little exercise to get my feet wet. For this I picked the Roman Numerals kata.

I started out by following this JsTestDriver example. I created a new JavaScript project in Eclipse, added src/main/js and src/test/js folders, and created the JsTestDriver configuration file:

server: http://localhost:9876

load:
  - src/main/js/*.js
  - src/test/js/*.js

Next, I opened the JsTestDriver window using Window|Show View|Other|JavaScript|JsTestDriver and started the JsTestDriver server. I then opened the client in FireFox at http://127.0.0.1:42442/capture.

The next step was to create a new run configuration: Run|Run Configurations|JsTestDriver Test. I selected the project and the JsTestDriver configuration within the project, and checked Run on Every Save.

Now everything is set up to start the TDD cycle. First a test:

RomanNumeralsTest = TestCase("RomanNumeralsTest");

RomanNumeralsTest.prototype.testArabicToRoman
    = function() {
  var romanNumerals = new TestApp.RomanNumerals();

  assertEquals("i", romanNumerals.arabicToRoman(1));
};

And then the implementation:

TestApp = { };

TestApp.RomanNumerals = function() { };

TestApp.RomanNumerals.prototype.arabicToRoman
    = function (arabic) {
  return null;
};

I completed the rest of the kata as usual.

Reflections

The cool thing about JsTestDriver is that it automatically runs all the tests every time you change something. This shortens the feedback cycle and keeps you in the flow. For Java, InfiniTest does the same.

The problem with my current tool chain is that support for renaming is extremely limited. I got Operation unavailable on the current selection. Select a JavaScript project, source folder, resource, or a JavaScript file, or a non-readonly type, var, function, parameter, local variable, or type variable.

Other refactorings do exist, like Extract Local Variable and Extract Method, but they mess up the formatting. They also give errors, but then work when trying again.

All in all I feel satisfied with the first steps I’ve taken on this journey. I’m a little worried about the stability of the tools. I also realize I have a more to learn about JavaScript prototypes.

Likely Candidates for Frictionless Development Environments

Last time I reviewed the book on Consumption Economics, which explains how technology companies and their products will have to change to survive the brave new world that we’re entering.

So what would we find if we take the lessons from the book and apply them to our own software development environment? I think the answer would be surprisingly close to what I’ve called a Frictionless Development Environment (FDE) before.

To be honest, I’ve only started thinking more systematically about FDEs after reading Consumption Economics. In Five Essential Components of a Frictionless Development Environment, I’ve laid out the major building blocks of an FDE: cloud computing, big data analytics, recommendation engines, plug-in architecture, and open source.

It may be to soon to expect existing solutions to have all of those, but let’s see where we stand. There are already some cloud development environments. Most of these are geared towards web developers, and offer limited languages (mostly JavaScript). Some offer a big enough range to be interesting to a wide range of developers.

Big data analytics and recommendation engines are big features that are probably not there yet, but could always be added later. What’s more important is to look for a plug-in architecture and particularly for open source. These are fundamental architectural and business decisions.

Using open source as a criterion reduces our list to Cloud9 and Orion. Both have a plug-in architecture. The latter is an Eclipse project, but the former seems more mature. Be sure to follow both Cloud9 and Orion.

So what do you think? Would any of these cloud IDEs work for you? What other open source cloud IDEs are out there?

How To Remove Friction From Your Version Control Experience

ErrorLast week, I spend several days fixing a bug that only surfaced in a distributed environment.

I felt pressure to fix it quickly, because our continuous integration build was red, and we treat that as a “stop the line” event.

Then I came across a post from Tomasz Nurkiewicz who claims that breaking the build is not a crime.

Tomasz argues that a better way to organize software development is to make sure that breaking changes don’t affect your team mates. I agree.

Broken Builds Create Friction

Breaking changes from your co-workers are a form of friction, since they take away time and focus from your job. Tomasz’ setup has less friction than ours.

But I feel we can do better still. In a perfect Frictionless Development Environment (FDE), all friction is removed. So what would that look like with regard to version control?

With current version control systems, there is lots of friction. I complained about Perforce before because of that.

Git is much better, but even then there are steps that have to be performed that take away focus from the real goal you’re trying to achieve: solving the customer’s problem using software.

For instance, you still have to create a new topic branch to work on. And you have to merge it with the main development line. In a perfect world, we wouldn’t have to do that.

Frictionless Version Control

version-controlSo how would a Frictionless Development Environment do version control for us?

Knowing when to create a branch is easy.

All work happens on a topic branch, so every time you start to work on something, the FDE could create a new branch.

The problem is knowing when to merge. But even this is not as hard as it seems.

You’re done with your current work item (user story or whatever you want to call it) when it’s coded, all the tests pass, and the code is clean.

So how would the FDE know when you’re done thinking of new tests for the story?

Well, if you practice Behavior-Driven Development (BDD), you start out with defining the behavior of the story in automated tests. So the story is functionally complete when there is a BDD test for it, and all scenarios in that test pass.

Now we’re left with figuring out when the code is clean. Most teams have a process for deciding this too. For instance, code is clean when static code analysis tools like PMD, CheckStyle, and FindBugs give no warnings.

Some people will argue that we need a minimum amount of code coverage from our tests as well. Or that the code needs to be reviewed by a co-worker. Or that Fortify must not find security vulnerabilities. That’s fine.

pipelineThe basic point is that we can formally define a pipeline of processes that we want to run automatically.

At each stage of the pipeline can we reject the work. Only when all stages complete successfully, are we done.

And then the FDE can simply merge the branch with the main line, and delete it. Zero friction from version control.

What do you think?

Would you like to lubricate your version control experience? Do you think an automated branching strategy as outlined above would work?

Five Essential Components of a Frictionless Development Environment

One of the challenges of maintaining a consistent programming style in a team is for everyone to have the same workspace settings, especially in the area of compiler warnings.

Every time a new member joins the team, an existing member sets up a new environment, or a new version of the compiler comes along, you havebook.e to synchronize settings.

My team recently started using Workspace Mechanic, an Eclipse plug-in that allows you to save those settings in an XML file that you put under source control.

The plug-in periodically compares the workspace settings with the contents of that file. It notifies you in case of differences, and allows you to update your environment with a couple of clicks.

Towards a Frictionless Development Environment

Workspace Mechanic is a good example of a lubricant, a tool that lubricates the development process to reduce friction.

LubricationMy ideal is to take this to the extreme with a Frictionless Development Environment (FDE) in which all software development activities go very smoothly.

Let’s see what we would likely need to make such an FDE a reality.

In this post, I will look at a very small example that uncovers some of the basic components of an FDE.

Example: Creating the Class Under Test

In Test-Driven Development, we start out with a test and there is no class under test yet. Eclipse has a Quick Fix to create the class, but we still have to manually invoke it and select a source folder to store it in (assuming you have different source folders for main and test code).

It would be nicer if the IDE would understand what you’re trying to do and automatically create the skeleton for the class under test for you and save it in the right place.

Big DataThe crux is for the tool to understand what you are doing, or else it could easily draw the wrong conclusion and create all kinds of artifacts that you don’t want.

This kind of knowledge is highly user and potentially even project specific. It is therefore imperative that the tool collects usage data and uses that to optimize its assistance. We’re likely talking about big data here.

Given the fact that it’s expensive in terms of storage and computing power to collect and analyze these statistics, it makes sense to do this in a cloud environment.

That will also allow for quicker learning of usage patterns when working on different machines, like in the office and at home. More importantly, it allows building on usage patterns of other people.

What this example also shows, is that we’ll need many small, very focused lubricants. This makes it unlikely for one organization to provide all lubricants for an FDE that suits everybody, even for a specific language.

Open Source SoftwareThe only practical way of assembling an FDE is through a plug-in architecture for lubricants.

Building an FDE will be a huge effort. To realize it on the short term, we’ll probably need an open source model. No one company could put in the resource required to pull this off in even a couple of years.

The Essential Components of a Frictionless Development Environment

This small example uncovered the following building blocks for a Frictionless Development Environment:

  1. Cloud Computing will provide economies of scale and access from anywhere
  2. Big Data Analytics will discern usage patterns
  3. Recommendation Engines will convert usage patterns into context-aware lubricants
  4. A Plug-in architecture will allow different parties to contribute lubricants and usage analysis tools
  5. An Open Source model will allow many organizations and individuals to collaborate

What do you think?

Do you agree with the proposed components of an FDE? Did I miss something?

Please share your thoughts in the comments.